Coupled seismic response analysis of rubble-mound breakwaters

Author:

Memos C. D.1,Kiara A.1,Pavlidis E.1

Affiliation:

1. National Technical University of Athens

Abstract

The present investigation considers the seismic behaviour of rubble-mound breakwaters by taking into account the coupling between the hydrodynamic loading and the shaking of the mound. To this end a boundary element code was developed that predicts the hydrodynamic pressures on the faces of the breakwater. This was coupled with a geotechnical code providing the accelerations along the height of the structure. Shaking-table experiments were carried out to verify the model. The methodology was then applied to real-life structures. It is found that the quality of the foundation soil directly and decisively affects the pressures and induced accelerations. Weak foundations can trigger large structure deformations. In tall structures the pressures and accelerations of the mound increase with frequency. Far from resonance, the maximum pressures on the slopes occur at 40% of the water depth from the bed. The total hydrodynamic force can be high under resonance conditions. It is also found that Westergaard's expression overestimates pressures, except in cases of rigid base and shakings of small acceleration and high frequency. The coupling of the hydrodynamic loading and the shaking of the mound, as well as the frequency dependence of the model, represent advances over the conventional Westergaard's relation.

Publisher

Thomas Telford Ltd.

Subject

Ocean Engineering,Energy Engineering and Power Technology,Fuel Technology,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3