Investigation of mechanical and durability properties of sustainable high-strength concrete

Author:

Riaz Mamoon1,Alam Zeshan2,Zafar Tayyab1,Javed Usman3,Akhlaq Hanzlah4

Affiliation:

1. Department of Civil Engineering, International Islamic University, Islamabad, Pakistan

2. Department of Civil Engineering, International Islamic University, Islamabad, Pakistan; School of Civil Engineering, Shenyang University of Technology, Shenyang, China

3. School of Civil and Mechanical Engineering, Curtin University, Perth, Australia

4. Department of Civil Engineering, University of Sargodha, Sargodha, Pakistan

Abstract

The surge in production of cement due to the rapid growth of the construction industry has an adverse effect on the environment globally caused by the huge amount of carbon dioxide emission. To produce an environment-friendly concrete, this study investigated the effective contribution of silica fume on the various mechanical and durability characteristics of high-strength concrete. In this regard, the incorporation of silica fume was carried out with progressive proportions of 0, 5, 10, 15, 20, 25 and 30% by weight of cement constituting various concrete mixes – namely, CM, SF05, SF10, SF15, SF20, SF25 and SF30, respectively. The mechanical and durability properties of concrete improved with the incorporation of silica fume up to 15% replacement. However, excessive replacement of silica fume has an adverse effect on the mechanical and durability properties of cement due to the dilution effect on cement. Similarly, in terms of mechanical characteristics, the proposed 15% substitution of silica fume resulted in the highest compressive and flexural strengths with respect to those of CM. The maximum reduction in strength loss with respect to that of the control mix was 41.17 and 28.04% for sulfuric and hydrochloric acids due to the formation of a densified microstructure.

Publisher

Thomas Telford Ltd.

Subject

Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Forensic Engineering;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3