Characterization of natural and biomimetic spider silk fibers

Author:

Keerl David1,Scheibel Thomas1

Affiliation:

1. Lehrstuhl Biomaterialien, Universität Bayreuth, Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

Abstract

Spider silk produced by orb-weaving spiders reveals fascinating mechanical properties, in particular, its unique combination of high tensile strength and elasticity, distinguishing it from most other natural or man-made fibers. Here, mechanical characteristics of dragline silk fibers of Araneus diadematus were determined after forcibly silking at varying reeling speeds, humidity, as well as in the presence of water. In comparison, fibers of a recombinant silk protein (eADF3(AQ24NR3)) using solely aqueous solutions was produced. Mechanical properties of these biotech fibers were in the range of other artificial silk fibers made from proteins with comparable molecular weight. Structural investigations by Fourier-transform infrared spectroscopy revealed that the ß-sheet content of the biotech fibers is lower and the ß-sheets are less oriented in comparison to native dragline silks. The results suggest that pulling fibers from aqueous solutions in combination with postspin techniques will help to produce artificial silk fibers with mechanical properties for distinct technical or medical applications.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3