X-ray spectromicroscopic study of interactions between NaCl and calcium silicate hydrates

Author:

Yoon Seyoon1,Ha Juyoung2,Chae Sejung Rosie3,Kilcoyne David A.4,Monteiro Paulo J. M.5

Affiliation:

1. Research Fellow, School of Engineering, Kings College, University of Aberdeen, Aberdeen, UK

2. Assistant Professor, Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA

3. Graduate Student, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

4. Beamline Scientist, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

5. Professor, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA

Abstract

X-ray diffraction (XRD), scanning transmission X-ray microscopy (STXM) and X-ray absorption near edge structure (XANES) spectra were used to investigate the interactions between sodium chloride (NaCl) and calcium silicate hydrate (C-S-H), the primary binding phase of hydrated Portland cement. XRD analysis indicates the interlayer expansion of C-S-H with a high Ca/Si ratio. Contrast maps of STXM images collected from C-S-Hs with different Ca/Si ratios reacted with NaCl solution reveal that sodium interacts with C-S-H with a low Ca/Si ratio, while chloride is intercalated into the interlayer of C-S-H with a high Ca/Si ratio. Silicon K-edge XANES spectra were analysed to understand the variation in the structure of silicate chains. This revealed that the interaction with the sodium cations depolymerises the silicate chains of C-S-H with a low Ca/Si ratio. The mechanism involved for the selection of adsorbed ions is probably due to the residual charge between the positive charge of interlayer calcium ions and the negative charge of the end group of silicate chains in C-S-H.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3