Cementitious binder of phosphogypsum and other materials

Author:

Liu Laibao1,Zhang Yunsheng1,Tan Kefeng2

Affiliation:

1. Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing, China

2. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China

Abstract

This paper presents the properties of a binder developed to produce eco-friendly building products. The mixing ratio of the binder, comprising phosphogypsum, slag (ground granulated blast-furnace slag), lime and cement, was obtained based on orthogonal experiments. The test results showed that, under steam curing, calcium silicate hydrate gel and ettringite were formed in the hardened binder, leading to a higher strength. After steam curing at 90°C for 7 h and then air curing, the 28 d compressive strength of the binder reached 41·7 MPa. Using this binder and river sand, bricks with a 28 d compressive strength of 21·4 MPa were successfully manufactured.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recycling of Oily Sludge as a Roadbed Material Utilizing Phosphogypsum-Based Cementitious Materials;Advances in Civil Engineering;2019-05-23

2. Editorial;Advances in Cement Research;2015-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3