A DEM method for simulating rubber tyres

Author:

Ren Z. L.12,Cheng Y. P.1,Xu X.2

Affiliation:

1. Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.

2. Department of Engineering, University of Cambridge, Cambridge, UK.

Abstract

Recently, recycled rubber tyres were found to be an economical and environmental-friendly reinforcement material in geotechnical engineering. Although the use of rubber tyre-reinforced soil has become increasingly popular, there is still a lack of a robust and systematic method to model rubber tyres when using the discrete-element method (DEM) to investigate the stress-strain responses. In this paper, DEM rubber tyres are simulated by bonding regular-packed balls, and numerically tested under tensile force using the particle flow code in three dimensions. When comparing the effects of different packings on the sample, using Young's modulus and Poisson's ratio, it was found that only body-centred-cubic packing could achieve a Poisson's ratio of 0·5 representing no volume change during the deformation of rubber. The difference between uniaxial compression and tension simulations was also compared as well as the influences of particle overlapping, particle radius and sample aspect ratio on the mechanical response of the tyre model. Finally, the DEM parameters were set to match the experimental Young's modulus data. This proposed DEM rubber tyre strips model could be a basis to study other rubber reinforcements such as tyre chips and shreds, irregular rubber buffings and granulated rubber.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3