Static liquefaction behavior of short discrete carbon fiber reinforced silty sand

Author:

Bao X.1,Jin Z.2,Cui H.3,Ye G.4,Tang W.5

Affiliation:

1. Associate Professor, Underground Polis Academy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China,(corresponding author)

2. Master Degree Candidate, Underground Polis Academy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China,

3. Professor, Underground Polis Academy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China,

4. Professor, Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, China,

5. Associate Professor, School of Architecture and Built Environment, The University of Newcastle, Callaghan, NSW, Australia,

Abstract

Saturated silty sand is more likely to cause landslide due to static liquefaction behavior. In this study, easily dispersible short synthetic carbon fibers (CF), with larger aspect ratio and smaller diameter (7 μm) compared with conventional polypropylene fibers, were used to improve the liquefaction resistance behavior of silty sand. A series of triaxial tests under different confining pressures were carried out on reinforced samples with different fiber contents (0.2, 0.5, 1.0%) and lengths (3, 6, 10 mm). The properties of stress and strain relationships, development of pore water pressure, effective stress path, liquefaction brittleness index, critical state line and volumetric strain were examined. The results from undrained tests showed that both the peak and post-peak deviator stresses of CF reinforced samples did not show a regular increase with fiber length. The 6 mm CF fiber showed the best reinforcement effect at a confining pressure of 100 kPa while 3 mm CF fiber achieved the best results at a confining pressure of 200 kPa. CF-reinforced sand was confirmed to be an effective liquefaction mitigation method compared with the method using conventional polypropylene fibers. This study provides an effective improvement method in particular to prevent a geological hazard in backfilling engineering projects.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3