Relationship between cement composition and the freeze–thaw resistance of concretes

Author:

Adu-Amankwah Samuel1,Zajac Maciej2,Skocek Jan2,Ben Haha Mohsen3,Black Leon4

Affiliation:

1. Teaching Fellow, School of Civil Engineering, University of Leeds, Leeds, UK (corresponding author: )

2. Senior Scientist, Heidelberg Technology Center GmbH, Leimen, Germany

3. Principal Scientist, Heidelberg Technology Center GmbH, Leimen, Germany

4. Professor of Infrastructure Materials, School of Civil Engineering, University of Leeds, Leeds, UK

Abstract

Concrete exposed to cyclic freezing and thawing may deteriorate by surface scaling, internally developed cracks or both in combination. The rate of deterioration tends to be accelerated in concretes containing higher levels of supplementary cementitious materials including slag and limestone. A fundamental insight into the relationship between cement composition and freeze–thaw resistance is therefore imperative for developing durable composite cement concretes. Concrete samples prepared from CEM I, binary slag cements and ternary limestone slag cement blends at 0·5 w/b ratio without air entrainment were investigated. The freeze–thaw test was based on the CIF method according to PD CEN/TR 15177. Additionally, phase assemblages in the concretes before and after freeze–thaw damage were evaluated. Before freeze–thaw testing, compressive strengths were similar but the composite cements were slightly more susceptible to carbonation. However, the scaling and internal damage resistance decreased in the order of CEM I, binary and limestone ternary blended cements. The composition of the scaled material differed from the bulk, revealing an absence of portlandite and a marked reduction in AFm and ettringite contents. A probable explanation for the reduced freeze–thaw resistance includes the porosity differences and the lower portlandite content compared to CEM I concrete.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3