A microstructurally based effective stress for unsaturated soils

Author:

ALONSO E.E.,PEREIRA J.-M.,VAUNAT J.,OLIVELLA S.

Abstract

Current alternative choices of stress state variables in unsaturated soils are described and compared, with a special focus on the use of an effective stress. Experimental data on stiffness and shear strength evolution with suction suggest that the proportion of suction contributing to the effective stress is often much smaller than predicted by the term ‘suction times degree of saturation' generally used in effective stress expressions of the Bishop type. It is suggested that effective stress in unsaturated soils should be related to soil microstructure. An effective degree of saturation is defined as describing the volume of water partially filling the soil macroporosity. This effective degree of saturation defines the proportion of the prevailing suction that actually contributes to the effective stress. Two alternative expressions (piecewise linear and non-linear) are proposed for the effective degree of saturation. They offer a similar performance. Available data on stiffness and shear strength variation with suction of a few different soils, ranging from a markedly granular material to high-plasticity clay, have been analysed. The analysis supports the proposed microstructural interpretation of the effective stress. Indeed, for granular soils the effective degree of saturation is almost equal to the total degree of saturation, and therefore the Bishop-type expression generally used as an effective stress is recovered. As the soil becomes more plastic, the proportion of free water reduces, and the contribution of suction to the effective stress reduces. At the limit, when the proportion of free water is negligible (this is the case of high-plasticity clays at high values of suction) the proposed effective stress reduces to the net stress (excess of total stress over the air pressure). The proposed effective stress equation may be identified if information on the amount of immobile water is available for a given soil. Water retention or porosimetry data provide this information. This has been shown by comparing the present proposal with independently obtained information about immobile water in high-plasticity clays.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3