Evaluation of recycled concrete aggregate backfill for geosynthetic-reinforced MSE walls

Author:

Soleimanbeigi A.1,Tanyu B. F.2,Aydilek A. H.3,Florio P.4,Abbaspour A.5,Dayioglu A. Y.6,Likos W. J.7

Affiliation:

1. Research Scientist, Department of Civil and Environmental Engineering University of Wisconsin, Madison, Wisconsin, USA,

2. Associate Professor, Department of Geotechnical and Geological Engineering, George Mason University, USA,

3. Professor, Department of Civil and Environmental Engineering, University of Maryland, College Park, USA,(corresponding author)

4. Geotechnical Engineer, AECOM, Middleton, WI, USA,

5. Geotechnical Engineer, ECS Ltd., Chantilly, VA, USA,

6. Assistant Professor, Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey,

7. Gary Wendt Professor, Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA,

Abstract

Mechanical and hydraulic properties of recycled concrete aggregate (RCA) were evaluated for use as backfill in mechanically stabilized earth (MSE) walls. Large-scale drained triaxial tests, direct shear tests and pullout tests were performed to obtain mechanical properties of RCA interacting with various geosynthetics. Long-term filtration (LTF) tests were performed to evaluate hydraulic conductivity of RCA-geotextile systems. Results showed that the RCA had an internal friction angle of 49°, which was within the typical range. The RCA-uniaxial geogrid had the highest interface friction angle of 36° – and the interface friction angles of RCA-biaxial geogrid, RCA-nonwoven geotextile, and RCA-woven geotextile were 32°, 26° and 22°, respectively. Reinforced RCA showed comparable pullout capacity to reinforced sand. No slippage was observed between the RCA and geotextiles or geogrids, and the failures occurred mainly due to rupture of the geotextiles and geogrids during the pullout test. Results of the LTF tests showed that, over a filtration period of 2500 h, the ratio of mean hydraulic conductivity of RCA only to that of RCA-nonwoven geotextile and RCA-woven geotextile systems remained between 0.91 and 3.2, suggesting that the clogging of the geotextiles with RCA was minimal.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3