Tidal range generation: combining the Lancaster zero-dimension generation and cost models

Author:

Vandercruyssen David1ORCID,Baker Simon2,Howard David3ORCID,Aggidis George4ORCID

Affiliation:

1. Research student, School of Engineering, Renewable Energy and Fluid Machinery Group, Lancaster University, Lancaster, UK (corresponding author: )

2. Research student, School of Engineering, Renewable Energy and Fluid Machinery Group, Lancaster University, Lancaster, UK

3. Fellow of UK CEH, UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK

4. Head of Energy, School of Engineering, Renewable Energy and Fluid Machinery Group, Lancaster University, Lancaster, UK

Abstract

Financial viability and political will ultimately determine if tidal range power schemes are developed. This research aims to demonstrate a robust system to make initial estimates of capital costs for tidal range schemes that can be compared between systems and options. A levelised cost of energy (LCOE) is used to compare a tidal range barrage (Morecambe Bay) and a coastal tidal lagoon (North Wales) in the UK; the schemes are set in context with other common energy sources. The results show the Morecambe Bay barrage generates marginally more electricity than the North Wales coastal lagoon and has a shorter impoundment at lower cost. However, the economic arguments for both schemes are similar; both are viable as the LCOE shows. Despite being shown to be financially viable, the sources of funding may remain a problem. Financial returns and two potential public funding mechanisms are discussed. The approach using two simple models makes a strong case for more detailed analysis and, in the current environmental, economic and social climate serious decisions must be taken.

Publisher

Thomas Telford Ltd.

Subject

General Energy,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tidal range electricity generation into the twenty-second century;Proceedings of the Institution of Civil Engineers - Energy;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3