Silica surface states and their wetting characteristics

Author:

Jin Jiaqi1,Wang Xuming1,Wick Collin D2,Dang Liem X3,Miller Jan D1

Affiliation:

1. Department of Materials Science and Engineering, College of Mines and Earth Sciences and College of Engineering, University of Utah, Salt Lake City, UT, USA

2. Department of Chemistry, College of Engineering and Science, Louisiana Tech University, Ruston, LA, USA

3. Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

Abstract

The wetting characteristics of silica (SiO2) surfaces can be described by molecular dynamics (MD) and ab initio simulations, including comparison of silica surfaces (talc (001), siloxanated quartz, tridymite (001) and quartz (001)), some of which have not been considered previously in the literature. Classic MD and ab initio simulation methods have been used to determine the contact angle, interfacial water structure, hydroxylation reaction and hydration energy, the results of which are compared with experimental results reported in the literature. Wetting of silica surfaces depends on surface polarity and extent of hydroxylation. The non-polar siloxane surfaces are characterized by a contact angle of about 80°, an MD ‘water exclusion zone’ of about 3 Å, a relaxed interfacial water orientation, inertness to hydroxylation and minimal hydration energy. The polar silica surfaces can be wetted by water and have a more ordered interfacial water structure. Silanol groups form at the polar silica surface during hydroxylation reactions, and the calculated hydration energy of −1·2 and −1·6 eV matches the experimental heat of immersion measurements reported in the literature, which correspond to hydrogen (H) bonding with interfacial water. Fundamental understanding of silica surfaces is important for understanding flotation phenomena and fluid flow in silica nanopores.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3