Hydration-state-modulated morphology, wetting and vapor permeation of the Opuntia surface

Author:

Manning Kenneth C1,Majure Lucas C2,Rykaczewski Konrad1ORCID

Affiliation:

1. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA

2. Florida Museum of Natural History, University of Florida Herbarium, Gainesville, FL, USA

Abstract

Self-regulating membranes that adjust mass transfer in response to environmental stimuli occur in nature and have a wide range of potential industrial applications. Inspired by the vapor transport regulation by stomata on cactus epidermal surfaces, a novel type of such membrane that regulates vapor transport based on the widening of nanofissures in a wax coating of a swelling material was recently introduced. Here it is shown that the network of epicuticular wax microfissures on the surface of Opuntia cactus cladodes exhibits equivalent seasonal hydration-induced morphology and vapor transport modulation. Using wettability measurements during controlled dehydration experiments and using microscale imaging of plants harvested during the wet and dry seasons, it is shown that the average external width of these microfissures decreases from approximately 15 μm down to 6 μm. Using simulations, it is estimated that dehydration decreases the vapor transport across the fracture network by 20–30%. Consequently, the plant-hydration-dependent surface morphological changes induce moderate vapor permeation modulation of the microfissure network but cannot be considered to have an on/off type of response. Nevertheless, these fissures act as secondary vapor pathways, providing an illustration of natural hierarchical design employed to mediate water vapor loss from the surface.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spreading and adhesion forces for water droplets on methylated glass surfaces;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2020-04

2. Editorial;Surface Innovations;2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3