Affiliation:
1. Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
Abstract
A modelling procedure to address the tunnel–anhydritic rock interaction is described in this paper. The model incorporates the basic physico-chemical phenomena involved in rock swelling, often observed during excavation and subsequent operation of tunnels. It includes (a) a provision for rock damage during tunnel excavation, (b) the precipitation of gypsum crystals in discontinuities and (c) a stress-dependent relationship between swelling strains and mass of gypsum precipitation. The model includes hydro-mechanical coupling and the transport of sulfate salts dissolved in the massif water. Rock damage is described by the development of a network of fractures that increases permeability and allows gypsum crystal growth. Field information, laboratory data and monitoring records available for Lilla tunnel, located in the province of Tarragona, Spain and excavated in Tertiary anhydritic claystone, were selected as a convenient benchmark case to test model capabilities. Predictions and measurements (swelling records of the unlined tunnel floor and swelling pressures against a structural invert) were found to agree reasonably well.
Subject
Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献