The impact of thermal-hydraulic variation on tunnel long-term performance: a tale of two tunnels

Author:

Wang Chao12,Xiao Zhipeng13,Di Murro Vanessa3,Osborne John3,Friedman Miles4,Li Zili12

Affiliation:

1. Civil, Structural and Environmental Engineering, University College Cork, Cork, Ireland

2. Irish Centre for Research in Applied Geosciences, University College Dublin, Ireland

3. European Centre for Nuclear Research, CERN, Geneva, Switzerland

4. Transport Infrastructure Ireland, Dublin, Ireland

Abstract

Long-term structural performance of ageing tunnels is influenced by various natural and anthropogenic factors. This study examines the impacts of two rarely-investigated climatic factors: rainfall and temperature. Two dedicated case studies were conducted on the CERN TT10 tunnel and Dublin Port Tunnel (DPT) using distributed fibre optic strain sensing (DFOS) and wireless sensor network (WSN) monitoring respectively. DFOS data showed an increasing deformation in TT10 tunnel, attributed to tunnel deteriorations and ground deformation, with seasonal variation of lining strains linked to rainfall-related seasonal change in pore water pressure. However, inconsistencies in rainfall-strain correlation were also noted due to geological complexities and varying pore water pressure sources. In contrast, WSN measurements showed that DPT deformation correlated with temperature, instead of precipitation. DPT deformation increased in warmer seasons and decreased in colder ones, in the absence of external disturbances, comprising reversible thermal deformation and irreversible deterioration-induced deformation. Over time, cyclic and periodic temperature changes caused elastic deformation to reverse, while plastic deformation accumulated, leading to ongoing tunnel deformation. These findings bring more insights into the resilience of critical underground infrastructure vulnerable to climate change, groundwater variations, and other environmental factors.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3