Heat transfer in a geothermal heat-pump system – an analytical assessment

Author:

Yang Y.1,Datcheva M.2,König D.1,Schanz T.1

Affiliation:

1. Chair of Foundation Engineering, Soil and Rock Mechanics, Ruhr-Universität Bochum, Bochum, Germany

2. Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

A heat transfer model of a vertical borehole heat exchange system (open-loop) is introduced. Outside the borehole, a linearly increasing initial temperature for the ground is employed. Inside the borehole, the heat transfer procedure is divided into passive and active steps. An analytical solution of the heat transfer problem for a system of semi-infinite ground with a finite line source is derived and the open-loop case is discussed. The temperature distribution both inside and outside the borehole is obtained for a long operation time. A model parameter study is performed and the results are discussed. The analytical solutions and parameter study results are also compared with the respective U-tube model (closed-loop system). It is shown that, compared with the U-tube model, the open-loop system can improve the heat exchange system by increasing system effectiveness.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Energy geostorage;Géotechnique Letters;2014-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3