3D assessment of fracture of sand particles using discrete element method

Author:

Cil M. B.1,Alshibli K. A.1

Affiliation:

1. Department of Civil & Environmental Engineering, University of Tennessee, Knoxville, TN, USA

Abstract

Shearing or compression of granular materials causes particles to translate and rotate relative to each other, interlock or fracture depending on their mineralogy, morphology, porosity, applied stresses and boundary conditions. Conventional soil plasticity theories consider mainly the stress level and density to predict soil failure and ignore the influence of particle fracture. However, recent research has shown that there is a strong relationship between granular particle fracture and plastic yielding and hardening. In this study, the fracture of individual silica sand particles was modelled by adopting the bonded particle model concept within the framework of the discrete element method (DEM). Individual three-dimensional (3D) particles were generated as an agglomerate of a large number of small spherical sub-particles that were connected by parallel bonds that resist moment and tension at contact points. The tensile strength variation observed when testing natural silica sand was achieved by changing the shape of the particle, the size and distribution of the spherical sub-particles and their bond strength. The onset and propagation of cracks through the particle were investigated using DEM and verified experimentally using 3D synchrotron micro-computed tomography images of sand. The behaviour across the scale from a single particle to a laboratory-size specimen is also presented and discussed.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference20 articles.

1. Azom. 2012, http://www.azom.com/article.aspx?articleID=1114 (accessed 08/08/2012).

2. The strength and dilatancy of sands

3. Discrete element simulation of crushable soil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3