Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile–soil interface

Author:

Olgun C. G.1,Ozudogru T. Y.12,Arson C. F.3

Affiliation:

1. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

2. Department of Civil Engineering, Istanbul Technical University, Istanbul, Turkey

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

This letter shows that the increase of heat exchanger pile capacity in response to heating, observed in several small-scale laboratory studies, cannot be directly attributed to the increase of contact pressure at the soil–pile interface. The main thermo-hydro-mechanical processes that influence the capacity and behaviour of heat exchanger piles include thermal hardening of the soil, thermally induced water flow, excess pore pressure development and volume changes upon thermal consolidation. Due to the lack of understanding of the behaviour around the soil–pile interface, thermo-mechanical interactions between the heat exchanger pile and the ground are not taken into account appropriately in energy foundation design. However, in situ and reduced-scale experiments provide evidence about temperature-induced changes in pile capacity, presumably as a result of the altered stress state around the test pile. A finite-element analysis was conducted to quantitatively assess the radial stresses and strains undergone by a heated pile embedded in deformable soil. The study indicates that radial contact pressures typically increase less than 15 kPa, which cannot fully explain the increase in shaft resistance observed in heating tests. Further analyses are underway to characterise the mechanisms that govern pile load–displacement behaviour and the limit state.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3