Investigation of the reduction in uncertainty due to soil variability when conditioning a random field using Kriging

Author:

Lloret-Cabot M.1,Hicks M. A.1,van den Eijnden A P.1

Affiliation:

1. Department of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

Spatial variability of soil properties is inherent in soil deposits, whether as a result of natural geological processes or engineering construction. It is therefore important to account for soil variability in geotechnical design in order to represent more realistically a soil's in situ state. This variability may be modelled as a random field, with a given probability density function and scale of fluctuation. A more convenient way to deal with the uncertainty of a soil property due to spatial variability, by constraining the generated random field at the locations of actual field measurements, is presented in this article. Conditioning the random field at known locations is a powerful tool, not only because it more accurately represents the observed variability on site, but also because it uses the available field information more efficiently. In situ cone penetration test (CPT) data from a particular test site are used to determine the input statistics for generating random fields, which are later constrained (conditioned) at the locations of actual CPT measurements using the Kriging interpolation method. The results from the conditional random fields are then analysed, to quantify how the number of field measurements used influences the reduction of uncertainty. It is shown that the spatial uncertainty relative to the original (unconditional) random field reduces with the number of CPTs used in the conditioning.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3