Shallow geothermal energy application with GSHPs at city scale: study on the City of Westminster

Author:

Zhang Y.1,Soga K.1,Choudhary R.1

Affiliation:

1. Department of Engineering, University of Cambridge, Cambridge, UK

Abstract

Geothermal energy is an efficient low carbon solution for the heating and cooling of buildings. For many megacities such as London and Beijing, the amount of energy that can be stored in the urban local subsurface is greater than their annual heating and cooling demands. The ground source heat pump (GSHP) system – a shallow geothermal technology that provides heating and cooling for buildings by continuously replenishing the energy in the subsurface – has been used increasingly in recent years, but its application has been generally limited to single buildings. In this study, a geographic information system-based simulation model was developed to estimate how many GSHPs could be installed at the city scale without losing control of the ground thermal capacity and to evaluate the degree to which such a system could contribute to the energy demands of buildings in a city. The model was built by embedding a Python-based GSHP design code into ArcGIS software and was trialled on the City of Westminster, a borough in London, UK, as a case study under the two scenarios of boreholes placed under buildings and boreholes around buildings. Under both scenarios, the model produced borehole allocation maps and ratio of capacity to demand maps. The results show that a large proportion of buildings could support their own heating demands through GSHPs and, through a well-organised district heating system, GSHPs may be used efficiently to satisfy heating demands throughout an urban area.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3