Automated progress measurement using computer vision technology in UK construction

Author:

Bozorgzadeh Abbas1,Umar Tariq2

Affiliation:

1. Project Management, Faithful+Gould, UK & Europe

2. Senior Lecturer, School of Architecture and Environment, University of the West of England, Bristol, UK

Abstract

A critical concern with the UK’s construction project progress monitoring and control techniques is their dependency on data collection, which is time consuming and unproductive and may lead to various circumstances in managing projects. However, collecting and accurately analysing information from construction sites requires the development of technologies. As key artificial intelligence (AI) technology, computer vision (CV) is a powerful tool for big data analysis that can address the aforementioned challenges. This study explores the status of CV-based construction progress monitoring (CV-CPM) adoption and the main barriers to and incentives for its adoption within the UK construction sites. In this respect, after an extensive review of the literature covering the AI technology in construction management and the concept, function and usage of CV and its integration with construction progress monitoring, including its benefits and drivers and technical challenges, a questionnaire was administered to UK construction professionals to collect their perceptions. The study results indicated that construction practitioners were relatively aware of CV-CPM but lacked competencies and skills. CV-CPM has been perceived to be relatively better than the traditional approach. Implications such as the cost of implementation, lack of expertise and resistance to change were the major challenges in CV-CPM adoption. Meanwhile, technological development, decision making and competitiveness were classified as incentives for its adoption.

Publisher

Thomas Telford Ltd.

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3