Site response analysis of liquefiable soil employing continuous wavelet transforms

Author:

Chavan D.1,Sitharam T.G.1,Anbazhagan P.1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Science, Bangalore, India.

Abstract

Propagation of the earthquake motion towards the ground surface alters both the acceleration and frequency content of the motion. Acceleration–time record and Fourier amplitude spectrum of the motion reveal changes in the acceleration and frequency content. However, Fourier amplitude spectrum fails to give frequency–time variation. Wavelet transforms overcome this difficulty. In the current study, site response analysis of a liquefiable soil domain has been investigated employing wavelet transforms. Three earthquake motions with distinct predominant frequencies are considered. It is revealed that the moment soil undergoes initial liquefaction, it causes a spike in the acceleration–time history. From the analysis, frequency of the spikes is found to be greater than the predominant frequency of the acceleration time history recorded at the ground surface. Interestingly, the spikes belong to the sharp tips of the shear stress–shear strain curve. Immediately after the spike, acceleration deamplification is observed. Post-liquefaction deamplification (filtering) of the frequency components is also observed.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3