Influence of the Poisson effect on the stress dependence of the elastic moduli of soil

Author:

Constandinou S.1,Hanley K. J.1

Affiliation:

1. School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh, UK.

Abstract

Effective medium theory and discrete-element method (DEM) simulations of smooth spheres both fail to correctly capture the small-strain stiffness of soil. The inability of the latter to capture small-strain stiffness can be overcome by adopting a rough-surface contact model, which includes the effect of asperity deformation. Hertzian spheres are commonly used in DEM which neglect the Poisson effect – that is, the lateral extension of a sphere orthogonal to an applied load. The hypothesis investigated in this paper is that this omission contributes to the inability of smooth-sphere DEM simulations to correctly capture the stress dependence of the elastic moduli of soil. This hypothesis was investigated using the finite-element method. At low-to-moderate confining stresses, the Poisson effect has little influence on the response. The Poisson effect becomes significant only at confining stresses on the order of 100 MPa, using parameters appropriate for a silica sand: stresses at which massive particle crushing would be expected. At lower stresses, rough-surface contact models remain the most justifiable way to match the stress–stiffness response measured in laboratory testing using DEM simulations.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3