Evaluation of microstructural strength of bio-cemented sand crust using rheometry

Author:

Arab M. G.12ORCID,Alsodi R.13,Shanablah A.1ORCID,Kavazanjian E.4ORCID,Zeiada W.15ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, UAE.

2. Structural Engineering Department, Mansoura University, Mansoura, Egypt.

3. Sharjah Engineering Research Institute, Sharjah Research Academy, Sharjah, UAE.

4. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA.

5. Public Works Engineering Department, Mansoura University, Mansoura, Egypt.

Abstract

Testing using a dynamic shear rheometer (DSR) and rheological analysis were conducted to analyse the detachment behaviour of bio-cemented soil at a microstructural level. Preventing detachment of soil particles from the ground surface is the key to mitigating the generation of fugitive dust due to wind-blown soil, a significant environmental problem in arid and semi-arid regions. Bio-cementation by way of enzyme-induced carbonate precipitation (EICP) has shown potential for mitigating soil particle detachment and the associated fugitive dust emissions. A strong correlation between particle detachment rate measured in wind tunnel tests and amplitude sweep test results using the DSR demonstrates the ability of the device to capture the detachment potential of soil bio-cemented using EICP. In addition to facilitating optimisation of bio-cementation for dust control, the rheometer tests also give an insight into the efficacy of rheometry for assessing soil microstructure strength for other geotechnical applications.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3