Flow dependent constriction-size distribution in gap-graded soils: a statistical inference

Author:

Dassanayake S. M.12,Mousa A.1

Affiliation:

1. School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Selangor Darul Ehsan, Malaysia.

2. Department of Decision Science, University of Moratuwa, Katubedda, Sri Lanka.

Abstract

The clogging–unclogging process in gap-graded soils is a result of the migration of seepage-driven fines, which subsequently induces measurable changes in the local hydraulic gradients. This process can be temporally observed in the variations of Darcy's hydraulic conductivity (K). The current study proposes an integrated statistical Monte Carlo approach combining the discrete-element method and two-dimensional computational fluid dynamics simulations to estimate the flow-dependent constriction-size distribution (CSD) for a gap-graded soil. The computational inferences were supported with experimental results using an internally stable soil, which was subjected to one-dimensional flow stimulating desired hydraulic loadings: a hydraulic gradient lower than the critical gradient applied as a multi-staged loading pattern. The 35th percentile size of the flow-dependent CSD (Dc35) for both internally stable and unstable gap-graded soils becomes approximately equal to Dc35 at steady state. However, a greater variation of larger constrictions persists for the unstable soils. This pilot study has shown the applicability of the proposed method to estimate flow-dependent CSD for a wide range of experimentally observed K values.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3