Modeling geogrid-stabilized aggregate base courses considering local stiffness enhancement

Author:

Byun Y.-H.1,Qamhia I. I. A.2,Kang M.3,Tutumluer E.4,Wayne M. H.5

Affiliation:

1. Associate Professor, School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University, Buk-gu, Daegu, Korea,(corresponding author)

2. Senior Research Scientist, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA,

3. Assistant Professor, Civil Engineering Department, University of St. Thomas, St. Paul, Minnesota, USA,

4. Abel Bliss Professor, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA,

5. Director of Application Technology and Engineering, Tensar International Corporation a division of CMC, Alpharetta, GA, USA,

Abstract

Lateral restraint is the primary stabilization mechanism associated with the interlocking of aggregate particles in the geogrid apertures. This paper presents findings from a laboratory study which quantifies the local stiffness enhancement of aggregates through micromechanical interlocking provided by two different types of geogrids. These findings are applied to model the resilient response characteristics of geogrid-stabilized base course composite systems. Using three pairs of bender elements as shear wave transducers, horizontal stiffness profiles were determined above mid-heights of aggregate specimens. For two types of geogrids with square- and triangular-shaped apertures, the shear modulus profiles decreased moving away from the geogrid location. Based on a relationship for aggregates, resilient modulus was estimated from the shear modulus. Considering the variations in resilient moduli with distance from the geogrid location, the local stiffness enhancements provided by the two geogrid types were assigned to modulus profiles of a geogrid-stabilized aggregate base course in flexible pavement mechanistic analysis and modeling. The modeling results demonstrate the effect of geogrid base stabilization on the computed pavement resilient responses for both geogrid types. The sublayering approach which properly considers modeling of the geogrid influence zone could be effectively used in mechanistic analysis of a geogrid-stabilized pavement system.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3