Dynamic stress attenuation characteristics of geocell-reinforced railway subgrade

Author:

Xiao J.12,Wang K.23,Xue L.24,Liu Z.25,Bai Y.26,Sun S.26,Yang F.7

Affiliation:

1. Professor, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China,

2. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China

3. Postgraduate student, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China,

4. PhD student, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China,(corresponding author)

5. Researcher, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China,

6. PhD student, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai, China,

7. Associate Researcher, Infrastructure Inspection Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing, China,

Abstract

The dynamic stresses in many subgrades for old railways exceed the bearing capacity of the fillers. The geocell has been used to reinforce weak subgrades and achieve a quick attenuation in the dynamic stress. In this study, a series of field tests were conducted to investigate the dynamic stress attenuation characteristics in a weak subgrade reinforced with a geocell. A coupled finite element-discrete element model was developed to analyze the mechanism of the stress attenuation from a multiscale perspective. The results indicated that increasing the geocell height or decreasing the weld distance resulted in an increase in the attenuation rate. There was a threshold for the weld distance, below which its impact on the stress attenuation rate became negligible. When the weld distance was small, the dynamic stress attenuation was attributed to the geocell induced lateral confinement for the infilled soil. With the weld distance increasing, the deformation of the geocell increased and the membrane effect was further mobilized, which contributed to the dynamic stress attenuation. Based on the field test and numerical results, a design method was proposed to determine the reinforcement parameters of geocell-reinforced subgrade, aimed at improving dynamic stress attenuation and preventing subgrade distress.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3