New method to design large-scale high-recirculation airlift reactors

Author:

Sanders David A1ORCID

Affiliation:

1. School of Engineering, University of Portsmouth, Portsmouth, UK

Abstract

High-recirculation airlift reactors (HRARs) are efficient for treating waste water. They use air to push a mixture around a reactor and to provide oxygen (O2) for biological microorganisms. Design methods have been limited in functionality and accuracy and have needed significant expert input and interpretation. This paper describes the creation of new structured methods that are faster and more efficient. Models and calculations are described. Improvements are made by analysing and improving the steady-state models of fluid dynamics within an HRAR. The models also deliver information about reactor design, in particular which parameters to modify to reach a steady-state result. Two-phase flow of water and air is modelled for an airlift bioreactor and applied to HRARs. Tests show that varying superficial gas velocity or simultaneously varying down comer and riser diameters can create a steady-state solution. The research investigated an HRAR and the associated Imperial Chemical Industries design program, created a new design program to replace it and then improved it using simple models of steady-state fluid dynamics. Mathematical models are used to forecast steady-state situations in the HRAR for specific gas or liquid flow rates and for various constructions. Experimental relationships forecast mass transfers between gas and liquid phases, and they predict flow.

Publisher

Thomas Telford Ltd.

Subject

General Environmental Science,Environmental Chemistry,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3