Effect of fiber set-up and density on mechanical behavior of robotic 3D-printed composites

Author:

İpekçi Ahmet1ORCID,Ekici Bülent2ORCID

Affiliation:

1. Lecturer, Department of Machine and Metal Technology, Dr. Engin PAK Cumayeri Vocational School, Duzce University, Duzce, Turkey

2. Professor, Faculty of Engineering, Department of Mechanical Engineering, Marmara University, Istanbul, Turkey

Abstract

The further development of composite manufacturing methods is characterized by the progress of their mechanical properties which are widely used in many applications as automotive, aerospace, and marine industries. The automated composite production techniques are as follows: automatic tape layering, automatic fiber placement, and filament winding methods used in many industries. Photopolymerized composites and their additive manufacturing methods are promising with new advances in technology. This method for printing continuous fiber-reinforced plastic composite parts by a six-axis industrial robotic arm is based on fused deposition modeling technology. The objective of this work is to obtain a better understanding of the mechanical properties of robotic three-dimensional printed photopolymer resin continuous fiberglass–reinforced composites (CFGRCs) as a function of different printing speeds (10, 20 and 30 mm/s), fiber densities (45, 55 and 65%), and fiber orientations (0, 0/90 and ±45°). This work infers that mechanical properties are significantly affected by the fiber density and fiber orientation of CFGRC. With this method, approximately 300 MPa tensile strength can be obtained and structurally preferred instead of ferrous materials in many areas.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3