Correction effect of jet-grouting on high-speed railway subgrade lateral deformation

Author:

Bai Yingqi1,Xiao Junhua2,Xue Lihua1,Liu Zhiyong3,Wang Binglong3

Affiliation:

1. PhD candidate, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, PR China

2. Professor, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, PR China (corresponding author: )

3. Professor, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, PR China

Abstract

Viable remediation of the large lateral deformation of high-speed railway (HSR) subgrades, especially in soft soil areas, is still absent. An integrated rectification scheme of high-pressure jet-grouting (HPJG) combined with stress-release techniques was conducted to rectify the large lateral deformation of an operational HSR subgrade in the soft soil area of China, but without any refined design and mechanical analysis before rectification due to the emergency. The objective of the study is to post-evaluate the rectification effects utilising field monitoring data and numerical calculations. The monitoring data showed that the maximum lateral deviation of the subgrade was 69.1 mm, which almost met the expected correction requirements. However, the influence of the excess pore water pressure (EPWP) dissipation on the correction deviation was not considered in the scheme. Therefore, a numerical model was established to further investigate this effect and corresponding mitigation methods. The calculated results revealed that EPWP in the foundation dissipated mostly within 6 months after rectification, and the deformation loss accounted for 30.7% of the total deviation. Prolonging the interval of two-row pile construction can be a plausible approach to mitigate the deviation loss. The findings provide a feasible method for correcting large lateral deformation of HSR subgrades.

Publisher

Emerald

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3