Resistive switching characteristics of mixed oxides

Author:

Misra Pankaj12,Sharma Yogesh3,Khurana Geetika3,Katiyar Ram Sharan42

Affiliation:

1. Research Associate Faculty, Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR, USA

2. Department of Physics, University of Puerto Rico, San Juan, PR, USA

3. Graduate Student, Department of Physics, University of Puerto Rico, San Juan, PR, USA

4. Professor, Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR, USA

Abstract

The unipolar resistive switching (RS) properties of amorphous lanthanum gadolinium oxide (LaGdO3) and samarium gadolinium oxide (SmGdO3) thin films deposited by pulsed laser deposition on platinised silicon substrate with platinum top electrode have been investigated. Reliable and repeatable non-volatile switching of the resistance of these materials was obtained with sufficiently large resistance ratio and non-overlapping and low switching voltages. In the case of SmGdO3, a multilevel RS with four resistance states was observed by controlling the compliance current that opens the possibility of multi-bit storage. The switching between low- and high-resistance states was attributed to the formation and rupture of conductive filaments, while multilevel switching was attributed to the variation in diameter of conducting filaments with changing compliance current. On the other hand, forming free bipolar resistive switching behaviour was found in graphene oxide (GO) thin films on indium tin oxide (ITO) substrate with platinum as the top electrode. The switching between the low-resistance state and high-resistance state showed a reliable and repeating behaviour with an on/off ratio of 104 at room temperature. The device showed good endurance and retention characteristics. The switching mechanism was found to be governed by the migration of oxygen between the GO layer and bottom ITO electrode.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3