Analysis of model sheet pile walls with plastic hinges

Author:

BOURNE-WEBB P.J.,POTTS D.M.,KöNIG D.,ROWBOTTOM D.

Abstract

As part of a wider project investigating the implications of Eurocode 3, Design of steel structures – Part 5: Piling, centrifuge testing of model sheet pile walls and numerical back-analysis were undertaken. The aims of the study were to examine the effect of plastic hinging on embedded retaining wall response, and to verify calculation methods for use in wider generic calculations. Physical modelling of an anchored wall embedded in dry sand was undertaken. In some of the tests a hinge zone was introduced into the wall in order to reproduce a kinematic mechanism similar to that associated with plastic hinge formation. Finite-element calculations were undertaken using Lade's double-hardening cap model to represent the behaviour of the sand. The analyses generally yielded good accord with the test results in many aspects of the wall behaviour. In terms of the aims of the testing, the study of the effect of plastic hinging was not realistically captured, because the hinge zone was present from the outset of the test, allowing greater than expected earth pressure redistribution, and because the moment–curvature characteristic of the notched wall did not reproduce the buckling effects seen in the plastic bending response of steel sheet piles. On the other hand, the satisfactory agreement between the test observations and the numerical predictions gave confidence in the use of the calculation model for further generic calculations using realistic steel sheet pile moment–plastic curvature characteristics.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference17 articles.

1. Barker C. A. Behaviour of sand: an investigation of Bochum sand. MSc dissertation, 2001, Imperial College, University of London.

2. Bourne-Webb P. J. Ultimate limit state analysis for embedded retaining walls. PhD thesis, 2004, Imperial College, University of London.

3. Elastic-plastic flexure of embedded retaining walls

4. Plastic bending of steel sheet piles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3