Deflection and failure of high-stiffness cantilever retaining wall embedded in soft rock

Author:

Kunasegaram Vijayakanthan1ORCID,Takemura Jiro2ORCID

Affiliation:

1. PhD candidate, Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan (corresponding author: )

2. Associate Professor, Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo, Japan

Abstract

In this study, a centrifuge modelling system has been developed, in which the loading process from design conditions to the ultimate failure conditions can be simulated on an embedded wall in soft rock at a constant centrifugal (50g) acceleration. Soft sand rock was artificially modelled by using a sand−cement−clay mixture. In-flight excavation and the lateral loading processes were simulated by means of draining water from the wall front and feeding water to the retained soil side, respectively. Two centrifuge model tests have been carried out to investigate the influence of embedment depth on the stability of large-stiffness cantilever walls having flexural rigidity equivalent to a 2·5 m steel tubular pile wall. The results observed reveal that the wall can stand in the design condition with relatively small embedment depth, and provides a reasonable safety margin against ultimate failure. The stiff cantilever walls move by rigid-body rotation about a pivot point under ultimate loads, and a small increment in the embedment depth – for example, 20% – can significantly increase the stability of the wall considered in this study. A compression failure of the embedded medium at the shallow wall front and a shear wedge failure at the wall back from the wall toe were observed.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3