Diamond-like carbon-deposited films: a new class of biocorrosion protective coatings

Author:

Derakhshandeh Mohammad Reza1,Eshraghi Mohammad Javad1,Javaheri Masoumeh1,Khamseh Sara2,Sari Morteza Ganjaee2,Zarrintaj Payam3,Saeb Mohammad Reza4,Mozafari Masoud1

Affiliation:

1. Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Tehran, Iran

2. Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology, Tehran, Iran

3. School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran

4. Department of Resins and Additives, Institute for Color Science and Technology, Tehran, Iran

Abstract

A series of diamond-like carbon thin films was applied on AISI 316L stainless steel substrates through a pulsed-direct current plasma-enhanced chemical vapor deposition technique to study the effects of working parameters (bias voltage and deposition pressure) on the microstructure and biocorrosion resistance of films. Raman spectra indicated that under low bias voltage and higher deposition pressure, the films possess a higher amount of sp2 structure, lower internal stress and an improved biocorrosion resistance due to a smooth and defect-free morphology. The lamellar sp2 structure blocked a penetration of corrosive entities. The oxygen content of locally corroded areas (∼11·9 wt.%) was much higher than that of non-corroded areas (2·6 wt.%) corroborating galvanic corrosion between carbide and nitride phases. Moreover, by increasing the deposition pressure from 20 to 40 Pa, the internal stress decreased from 1·03 to 0·82 GPa. The results confirmed that it is possible to tailor the properties of the coatings such as structural composition and particularly biocorrosion resistance by the control over the working parameters. Such anticorrosive diamond-like coatings could benefit biomedical implants used for tissue regeneration.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3