Centrifuge study on the cyclic performance of caissons in sand

Author:

Cox James A.1,O'Loughlin Conleth D.2,Cassidy Mark3,Bhattacharya Subhamoy4,Gaudin Christophe5,Bienen Britta2

Affiliation:

1. Postgraduate Student, Department of Civil Engineering, University of Bristol, UK

2. Associate Professor, Centre for Offshore Foundation Systems, University of Western Australia, Crawley, Australia

3. Professor/Director, Centre for Offshore Foundation Systems, University of Western Australia

4. Professor, Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK

5. Professor/Deputy Director, Centre for Offshore Foundation Systems, University of Western Australia, Crawley, Australia

Abstract

Suction caissons are currently considered as an alternative to monopile foundations for met masts and offshore wind turbines. This paper presents the results of a series of centrifuge tests conducted on cyclically loaded suction caissons in very dense dry sand. Two representative caisson foundations were modelled at a 1∶200 scale in a geotechnical centrifuge and were subjected to a number of different cyclic loading regimes, for up to 12 000 cycles, both of which add to previous data sets available in the literature. During each test, changes in stiffness, the accumulation of rotation and settlement of the system were measured. It was found that the rotational caisson stiffness increased logarithmically with the number of loading cycles, but to a much lower extent than previously reported for monopiles. Similarly the accumulation of rotation was also observed to increase with number of cycles and was well described using a power relationship. An aggregation of rotation was also observed during two-way tests and is believed to be caused by the initial loading cycles that create a differential stiffness within the local soil. Predictions were then made as to the behaviour of a prototype structure based upon the observed test results and established influence parameters.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3