Impact of transient seepage on slope stability of earth-rock dams with geomembrane barrier defects

Author:

Cen Weijun1ORCID,Li Dengjun1,Wang Hui1

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China

Abstract

The water–air two-phase unsaturated seepage theory was employed to analyse the transient seepage field of an earth-rock dam with an impervious geomembrane barrier during rapid drawdown of the reservoir. Discussed is the resulting seepage behaviour of the dam after locations of defects in geomembranes and hydraulic conductivity of dam materials were changed. In addition, the unsaturated soil strength theory was used to calculate the anti-sliding safety factor of the upstream dam slope during drawdown. The uncertainty of effective stress parameters of dam materials was considered, and the Monte Carlo method was employed in the reliability analysis of the stability of the upstream dam slope. The results indicate that the location of defects has a significant influence on the initial phreatic surface distribution and the seepage flux mainly depends on the hydraulic conductivity of dam materials. Geomembranes with defects on the dam surface have an apparent hysteresis effect on the descending of the phreatic surface when the reservoir level drops, which causes a great decrease in the stability of the upstream dam slope. Matric suction significantly affects the stability of the upstream dam slope, while the air phase has little effect on slope stability when geomembranes are placed on the upstream surface of the dam.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3