Geothermal potential of the NE extension Warsaw (Poland) metro tunnels

Author:

Baralis Matteo1ORCID,Barla Marco1ORCID,Bogusz Witold2ORCID,Di Donna Alice1ORCID,Ryżyński Grzegorz3ORCID,Żeruń Mateusz3ORCID

Affiliation:

1. Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Turin, Italy

2. Department of Building Structures and Geotechnics, Building Research Institute, Warsaw, Poland

3. Polish Geological Institute, National Research Institute, Warsaw, Poland

Abstract

Thermoactive geostructures are considered an economically suitable and environment-friendly solution for heating and cooling buildings. Energy tunnels have gained growing interest in recent years because of the large ground volume involved in heat exchange in comparison to building foundations. Heat exchange is obtained by embedding a circuit of pipes into the precast concrete lining, resulting in a reduction of the initial costs of installation with respect to standard low-enthalpy geothermal solutions. In this paper, thermal activation of the twin tunnels of the II line of Warsaw metro, Poland, is considered with the aim of evaluating the geothermal potential of the line. Thermohydraulic finite-element analyses were performed on a number of representative cross-sections, considering site-specific hydrogeological conditions based on the Engineering Geological Database of the Capital City of Warsaw. Results demonstrate that the thermal activation of the two 1·6 km-long tunnels could exchange up to 5·3 and 5·8 GWh in the heating and cooling seasons, respectively. Furthermore, the influence of the local geological conditions on the exchangeable heat rate was investigated. The results form a basis for a preliminary assessment of the shallow geothermal energy utilisation potential for the design of further extensions of the metro line in Warsaw.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3