Optimal design and operation of pumping stations using NLP-GA

Author:

Rasoulzadeh-Gharibdousti Solmaz1,Bozorg Haddad Omid2,Mariño Miguel A.3

Affiliation:

1. University of Tehran, Tehran, Iran

2. College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran

3. Department of Land, Air & Water Resources, University of California, Davis, CA, USA

Abstract

This paper addresses the optimal design and operation of an irrigation pumping station system using hybrid non-linear programming and a genetic algorithm (NLP-GA), and evaluates the algorithm in a practical problem. Results of the NLP-GA are compared with existing optimisation approaches to solve the same problem. The analytical approaches considered are the Lagrange multiplier method, a genetic algorithm and the honey-bee mating optimisation algorithm. The Lagrange multiplier method, genetic algorithm, honey-bee mating optimisation and the NLP-GA hybrid are used to simultaneously optimise the minimum annualised investment cost of the pumping station and its annual operating cost. The solution includes selection of pump type, capacity, number of units and scheduling of pump operation. The hybrid algorithm takes advantage of the high speed of NLP as well as the intelligent searching of evolutionary algorithms to overcome the shortcomings of individual NLP and genetic algorithm methods such as trapping of local optima, reporting only local or near-global optimal solutions and the low convergence rate of evolutionary algorithms in this type of problem. The results highlight the advantages in design, effective operation and ease of the NLP-GA method for solving complex problems of the type considered here. Although the NLP-GA converges rapidly, the results are promising and compare well with those of the Lagrange multiplier method, the genetic algorithm and honey-bee mating optimisation.

Publisher

Thomas Telford Ltd.

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3