On the evolution of stress and microstructure during general 3D deviatoric straining of granular media

Author:

THORNTON C.,ZHANG L.

Abstract

The paper presents results of periodic cell simulations on a polydisperse system of 27 000 elastic spheres. In order to explore general three-dimensional stress space an initially isotropically compressed system is subjected to radial deviatoric strain paths and the corresponding stress and fabric responses are illustrated. It is shown that two parameters can be identified that characterise the stress and fabric respectively during general three-dimensional straining. Each parameter, when plotted against deviatoric strain, provides a unique evolution curve, irrespective of the loading direction. It is demonstrated that, for general states of stress, the magnitude of the deviatoric stress is entirely due to the strong force chains that constitute the sub-network of contacts transmitting greater than average contact forces. It is also demonstrated that the relationship between the Lode angle for stress and the Lode angle for strain can be characterised by the curvature of a circular arc and, for radial deviatoric straining, this constitutes a flow rule that defines the relationship between the directions of the stress and strain-rate vectors. Furthermore, by plotting the characteristic stress parameter against the curvature of the circular arc flow rule, a simple scaling law is obtained.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3