Modelling tunnelling-induced settlement of masonry buildings

Author:

Burd H. J.1,Houlsby G. T.1,Augarde C. E.1,Liu G.2

Affiliation:

1. Department of Engineering Science, University of Oxford

2. Ove Arup & Partners Hong Kong Ltd, Department of Engineering Science, University of Oxford

Abstract

Current practice for assessment of settlement damage to buildings due to tunnel construction usually starts with a procedure in which greenfield settlements are imposed on a structual model of the building. This process ignores the important interaction effects that the weight and stiffness of the building have on the settlements. This paper describes a three-dimensional finite element analysis in which the tunnel, the soil and a building are all treated in a single analysis. Example calculations are described, and these indicate that interaction between the building and the ground can have a significant effect on the extent of the predicted damage. The performance of the building is seen to be highly dependent on whether the settlements induce a sagging or hogging mode of deformation. The analyses are used to plot contours of soil surface settlement and also expected crack patterns within the building.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3