Cyclists in shared bus lanes: could there be unrecognised impacts on bus journey times?

Author:

Aldred Rachel1,Best Luke2,Jones Phil3

Affiliation:

1. Reader, Department of Planning and Transport, Faculty of Architecture and the Built Environment, University of Westminster, London, UK (corresponding author: )

2. Managing Director, Multimodal, Birmingham, UK

3. Managing Director, Phil Jones Associates, Birmingham, UK

Abstract

This paper contributes to debates around improving the modelling of cycles, through an exploratory case study of bus–cycle interactions in London. This case study examines undocumented delays to buses caused by high volumes of cyclists in bus lanes. It has generally been assumed that cyclists do not noticeably delay buses in shared lanes. However, in many contexts where cyclists routinely share bus lanes, cyclist numbers have historically been low. In some such places, bus lanes are now seeing very high volumes of cyclists, far above those previously studied. This may have implications for bus – and cycle – journey times, but traditionally traffic modelling has not represented the effects of such interactions well. With some manipulation of parameters taken from models of other cities, the model described here demonstrates that cycles can cause significant delays to buses in shared lanes, at high cycling volumes. These delays are likely to become substantially larger if London's cycling demographic becomes more diverse, because cyclist speeds will decline. Hence bus journey time benefits may derive from separating cycles from buses, where cycle flows are high. The project also suggests that microsimulation modelling software, as typically used, remains problematic for representing cyclists.

Publisher

Thomas Telford Ltd.

Subject

Transportation,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3