Horizontal highway segmentation optimisation using genetic algorithms

Author:

Borges Jr Nataniel P.1ORCID,Borges Nicolas P.2,Coelho Alexandre H.3,Destri Jr Jorge4,Valente Amir M.3

Affiliation:

1. Department of Computer Science, Saarland University, Saarbrücken, Germany (corresponding author: )

2. Computer Science Division, Aeronautic Institute of Technology, São José dos Campos, Brazil

3. Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis, Brazil

4. Transportation and Logistics Laboratory (LabTrans), Federal University of Santa Catarina, Florianópolis, Brazil

Abstract

This paper presents the use of genetic algorithms (GAs) for optimising different global positioning system-based procedures for horizontal roadway alignment extraction. Two algorithms are proposed – one uses design information to guide the GA, aiming to evaluate the segmentation procedures' precision, while the other uses curve-similarity measures. The linear matching model, the discrete Fréchet distance and the modified Hausdorff distance were tested for guiding the optimisation algorithm in cases when there is no design information available. This paper also presents an extension to a segmentation method available in the literature for increasing the optimisation performance. The proposed algorithms were evaluated on a synthetic data set with 2100 curves. In the experiments, both algorithms correctly identified all the curves, with the best segmentation precision achieved by the algorithm with design information, closely followed by the curve-similarity metrics. Compared with manual segmentation, all showed good results.

Publisher

Thomas Telford Ltd.

Subject

Transportation,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on Highway Alignment Optimization Considering Rollover Stability Based on Two-Dimensional Point Collision Dynamics;Applied Sciences;2022-12-30

2. Editorial;Proceedings of the Institution of Civil Engineers - Transport;2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3