Wavelet neural network model for river flow time series

Author:

Krishna Budu1,Satyaji Rao Yellamelli Ramji1,Nayak Purna Chandra1

Affiliation:

1. Deltaic Regional Center, National Institute of Hydrology, Kakinada, India

Abstract

A new hybrid model that combines wavelets and an artificial neural network (ANN) called the wavelet neural network (WNN) model is proposed and applied for time series modelling of river flow. Time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analysed by the WNN model. The observed time series are decomposed into sub-series using a discrete wavelet transform and then an appropriate sub-series is used as input to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and auto-regressive (AR) models. The WNN model was able to provide a good fit with the observed data, especially the peak values during testing. The benchmark results from WNN model applications show that the hybrid model produces better results than the ANN and AR models in estimating hydrograph properties.

Publisher

Thomas Telford Ltd.

Subject

Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Wavelet Neural Network Approach for Daily Inflow Forecasting Using Tropical Rainfall Measuring Mission Data;Journal of Hydrologic Engineering;2019-02

2. Application of PCA and Clustering Methods in Input Selection of Hybrid Runoff Models;Journal of Environmental Informatics;2018

3. Flow forecasting models using hydrologic and hydrometric data;Proceedings of the Institution of Civil Engineers - Water Management;2017-06

4. Editorial;Proceedings of the Institution of Civil Engineers - Water Management;2017-06

5. Hourly runoff forecasting for flood risk management: Application of various computational intelligence models;Journal of Hydrology;2015-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3