Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode

Author:

Hou Hongying1,Yu Chengyi1,Liu Xianxi2,Yao Yuan1,Liao Qishu1,Dai Zhipeng1,Li Dongdong1

Affiliation:

1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, China

2. Faculty of Mechanical and Electronic Engineering, Kunming University of Science and Technology, Kunming, China

Abstract

It is very important to recycle the waste biomass resources for the environment protection and the circular economy. For this purpose, the waste old loofah was carbonized at 800°C for 1 h in the inert nitrogen gas (N2) atmosphere for lithium ion battery anode. The resultant waste-loofah-derived carbon was investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, nitrogen adsorption and desorption, galvanostatic charge/discharge, cyclic voltammetry and alternating current impedance. The results suggested that the waste-loofah-derived carbon powders consisted of many concomitant microparticles and nanoparticles with a specific surface area of about 492 m2/g. Furthermore, the waste-loofah-derived carbon anode also delivered high electrochemical lithium (Li) storage activity. For example, the initial specific discharge capacity was about 697 mAh/g, and the reversible discharge capacity was about 187 mAh/g at 1000 mA/g for 500 cycles and still about 98 mAh/g even at 3000 mA/g for 500 cycles, exhibiting good cycling stability. High surface area and structural defects may jointly contribute to high electrochemical performances.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3