Effect of spatial variation of strength and modulus on the lateral compression response of cement-admixed clay slab

Author:

Liu Y.1,Lee F.-H.1,Quek S.-T.1,Chen E. J.12,Yi J.-T.13

Affiliation:

1. Department of Civil and Environmental Engineering, National University of Singapore, Singapore.

2. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

3. College of Civil Engineering, Chongqing University, Chongqing, People's Republic of China.

Abstract

In deep excavation construction, improved soil layers consisting of overlapping cement-admixed columns formed by deep mixing method or jet grouting are often used to stabilise an excavation in soft soils. The purpose of such soil layers is to resist lateral compression generated by movement of the retaining wall. Cement-admixed soils are well known to have high heterogeneity in strength. In this paper, the heterogeneity in strength and Young's modulus are studied using random finite-element analyses, considering three sources of variation: namely, a deterministic radial trend in strength and Young's modulus; a stochastic fluctuation component due to non-uniform mixing; and positioning errors arising from off-verticality of the mixing shafts. The results show that positioning errors have the largest effect on the strength of the slab as a whole, whereas the radial trend has the smallest effect, when normalised by the volume-average strength. Based on the results obtained, methods are proposed which allow equivalent homogeneous mass strength and modulus of the improved slab to be determined for a chosen percentile of exceedance or reliability index, which can be used in deterministic finite-element analyses.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3