Force transmission and soil fabric of binary granular mixtures

Author:

de Frias Lopez R.1,Silfwerbrand J.2,Jelagin D.3,Birgisson B.4

Affiliation:

1. Division for Soil and Rock Mechanics, ABE School, KTH Royal Institute of Technology, Stockholm, Sweden.

2. Division for Concrete Structures, ABE School, KTH Royal Institute of Technology, Stockholm, Sweden.

3. Division for Building Materials, ABE School, KTH Royal Institute of Technology, Stockholm, Sweden.

4. School of Engineering and Applied Science, Aston University, Birmingham, UK.

Abstract

The effect of fines content on force transmission and fabric development of gap-graded mixtures under triaxial compression has been studied using the discrete-element method. Results were used to define load-bearing soil fabrics where the relative contributions of coarse and fine components are explicitly quantified in terms of force transmission. Comparison with previous findings suggests that lower particle size ratios result in higher interaction between components. A potential for instability was detected for underfilled fabrics in agreement with recent findings. It was also found that the threshold fines content provides an accurate macroscopic estimation of the transition between underfilled and overfilled fabrics.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3