Impact of supplementary cementitious materials and fibers in ECC on the fire resistance of hot-jointed SCC/ECC composites

Author:

Baloch Waqas Latif1,Siad Hocine1,Lachemi Mohamed1,Sahmaran Mustafa2

Affiliation:

1. Department of Civil Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, ON, Canada

2. Department of Civil Engineering, Hacettepe University, Ankara, Turkey

Abstract

This research examines the influence of various supplementary cementitious materials (SCMs) and fibers on the fire resistance of composite systems (CS) that combine engineered cementitious composites (ECC) in tension with self-compacting concrete (SCC) in compression. The study was designed to determine the ECC formulation ideally suitable for optimizing mechanical properties and bonding performance at ambient and elevated temperatures. The SCC and ECC were hot-joined without vibration or surface preparation, using a fresh-to-fresh casting method. Modifications to the chemical composition of ECC included the addition of Class-F fly ash (FAF), Class-C fly ash (FAC), or slag (SL), as well as polyvinyl alcohol (PVA) or steel reinforcing fibers. Subsequently, the samples were exposed to temperatures of 200 °C, 400 °C, 600 °C, and 800 °C, followed by comprehensive testing to evaluate their flexural strength, tensile strength, and interfacial properties. The results indicate that the incorporation of an ECC layer within the SCC system significantly improved mechanical strength, and thermal stability, both at ambient temperatures and under high-temperature conditions. Notably, the utilization of FAF in the ECC layer offered superior thermal stability and ensured the retention of desirable residual mechanical properties compared to FAC and SL. Moreover, steel fiber reinforcement greatly improved the bonding between SCC and ECC, outperforming PVA reinforcement at elevated temperatures.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3