Numerical simulation and design of circular steel-reinforced concrete-filled steel tubular short columns under axial loading

Author:

Ahmed Mizan1,Yehia Saad A.2,Shahin Ramy I.2,Emara Mohamed34,Patel Vipulkumar Ishvarbhai5,Liang Qing Quan6

Affiliation:

1. Centre for Infrastructure Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

2. Department of Civil Engineering, Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt

3. Structural Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt

4. Department of Civil Engineering, Delta Higher Institute for Engineering & Technology, Talkha, Egypt

5. School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC, Australia

6. College of Sport, Health, and Engineering, Victoria University, Melbourne, Australia

Abstract

This paper presents a computational model for determining the axial responses of circular Steel-Reinforced Concrete-Filled Steel Tubular (SRCFST) short columns. A novel confinement model is formulated for the concrete-core that is effectively confined by the external circular steel tube and the embedded steel section. The modeling scheme of confinement is programmed in the mathematical model that utilizes the fiber element discretization of column cross-sections. The numerical predictions are verified by experimental measurements and results obtained from the finite element analysis, demonstrating the accuracy of the modeling technology. In addition, existing concrete confinement models for concrete in circular Concrete-Filled Steel Tubular (CFST) columns are assessed. The new confinement model is shown to be superior in replicating the responses of SRCFST columns. The influences of design parameters on the column's performance are numerically investigated and the importance order of these parameters is determined by a sensitivity analysis. The study not only examines the validity of current design standards in determining the axial load capacity of SRCFST columns but also proposes a new design formula. The proposed confinement model can be employed in numerical procedures for the inelastic simulation of SRCFST columns and the design formula is suitable for use in practical design.

Publisher

Emerald

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3