A damage constitutive model of polypropylene fiber reinforced recycled aggregate concrete based on AE amplitude-frequency extremum

Author:

Yu Yu12,Yang Xin123,Tang Yu3

Affiliation:

1. School of Civil Engineering, Chongqing University, Chongqing, China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing, China

3. School of Civil Engineering, Fujian University of Technology, Fuzhou, China

Abstract

Adding polypropylene fiber into recycled aggregate concrete (RAC) can not only improve the performance, but also increase economic benefits. To study the single-blend and double-blend polypropylene micro and macro fibers and their effect on the compressive strength of RAC specimens, polypropylene micro fibers of two sizes and polypropylene macro fibers of two sizes were selected to design and produced 30 groups of polypropylene fiber reinforced RAC test specimens with 0%, 25% and 50% coarse aggregate substitution rates by controlling the fiber mixing proportion and the stress-strain curves, elastic modulus, peak strength, peak strain and acoustic emission amplitude-frequency extremum of each group of test specimen were obtained. According to the test results, the elastic modulus and peak stress of test specimens without polypropylene fibers decrease gradually with the increase of the coarse aggregate substitution rate. However, there is a certain increase in elastic modulus and peak stress after polypropylene fibers are added. A damage constitutive model for polypropylene fiber reinforced RAC was established, and by fitting with this model, it is found that although the elastic modulus and peak stress of RAC test specimens are increased by a certain extent, the fitting parameters αc of RAC are greater than those of ordinary concrete, and its post-peak strength is lower than that of ordinary concrete. The evolution law of acoustic emission amplitude-frequency extremum of polypropylene fiber reinforced RAC was studied, and it is found that the cumulative amplitude-frequency extremum Np of RAC is larger than that of the test specimens without polypropylene fibers, indicating that the addition of polypropylene fibers limits the crack propagation and increases the cumulative amplitude-frequency extremum representing fracture energy.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3