Wetting stability of flexible superamphiphobic surfaces under stretching loading

Author:

Xu Shuangshuang1,Wang Qing2,Wang Ning1,Qu Lei3

Affiliation:

1. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, China

2. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, China; Institute of Advanced Engineering Materials and Structures, College of Mechanical and Architectural Engineering, Taishan University, Tai’an, China

3. Institute of Nano Engineering, College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, China

Abstract

Wetting stability is important for superamphiphobic surfaces used in oil–water environments. Maintaining the wetting stability of flexible superamphiphobic surfaces under stretching is challenging. Here, flexible surfaces with stable superamphiphobicity under stretching were fabricated by covering flexible polydimethylsiloxane substrates with superamphiphobic powders. Superamphiphobic powders composed of micro- and nanoparticles were prepared by a chemical substitution reaction and modification treatment. The fabricated flexible surfaces possessed contact angles for water, kerosene and peanut oil of 155, 152 and 153°, respectively, exhibiting superhydrophobicity and superoleophobicity. The self-cleaning properties of the fabricated flexible surface were studied by removing contaminants from the surfaces using water and oil droplets. Also, the wettability and morphology of the fabricated flexible surface under stretching were investigated. It was found that the fabricated flexible surface maintained stable superhydrophobicity and superoleophobicity when the stretching strain reached 60% due to the fact that it still kept micro–nano double-scale structures after being stretched. The fabricated flexible surface coated with superamphiphobic powders with wetting stability is expected to be used in the field of liquid repellency.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the anti-corrosion properties of hydrophobic cement mortar containing coral sand;Archives of Civil and Mechanical Engineering;2023-06-23

2. Editorial;Surface Innovations;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3